PROBING DARK MATTER with PRIMORDIAL NUCLEOSYNTHESIS and the MICROWAVE BACKGROUND

Richard H. Cyburt Department of Physics University of Illinois cyburt@uiuc.edu

COSMOS-02 September 18-21, 2002 Adler Planetarium Chicago, IL, USA

Collaborators:

Brian Fields, *Department of Astronomy*, University of Illinois Keith Olive, *Theoretical Physics Institute*, University of Minnesota John Ellis, *Theory Division*, CERN

BBN versus CMB

 $BBN \equiv Big Bang Nucleosynthesis$

- $t \sim first 3 minutes$
- Mostly p and ⁴He
- Trace D, ³He and ⁷Li
- "No ⁶Li"

CMB ≡ Cosmic Microwave Background (Knox Talk)

Independent measures of the baryon density!

Fundamental test of cosmology! (Schramm & Turner 1998)

CONSTRAINING NEUTRINOS

- •BBN probes neutrino physics
 (Steigman, Schramm, & Gunn 1977; Dolgov Talk)
- ullet New relativistic degrees of freedom $N_
 u o N_{eff}$
- Use CMB to fix baryon content
- ullet abundances now determine N_{eff} (Cyburt, Fields, & Olive 2002)

NEW AGE u COUNTING

- MAP/PLANCK satellites → precision cosmology
- •CMB input allows tighter constraints
- •CMB precision demands other improvements
- ullet Precise D o sharper N_{eff} constraints

(Copi, Schramm, & Turner 1997) (Cyburt, Fields, & Olive 2002)

DECAYING DARK MATTER

- Some theories predict long-lived but unstable DM
 - ullet e.g. decaying gravitino, $ilde{G}$
- We consider
 - E/M decays: $X \rightarrow \chi + \gamma$
 - decays after BBN
 - during radiation dominance
- Parameters of theory
 - η , baryon-to-photon ratio
 - \bullet τ_X , lifetime of particle
 - $\bullet \ \rho_X/n_{\gamma}$

DECAYING DM and the LIGHT ELEMENTS

(Ellis et al. 1992, Kawasaki & Moroi 1995, Holtmann et al. 1999, Jedamzik 2000)

- ullet For small ho_X/n_γ , no significant change
- ullet For large ho_X/n_γ , all nuclei photo-dissociated
- Intermediate ρ_X/n_γ , redistribute abundances

Deplete nuclei w/ no production (4 He & 7 Li) $\gamma^* + ^7$ Li \rightarrow 6 Li + n

Populate underabundant species (D & 3 He) $\gamma^* + ^4$ He \rightarrow 3 He + n

Products can burn into heavier elements (6 Li) 3 He * + 4 He \rightarrow 6 Li + p

RESULTS

(Cyburt, Ellis, Fields, & Olive in prep.)

- We use the current CMB data to fix η . $\eta = (6.0 \pm 0.8) \times 10^{-10}$ (DASI, CBI, BOOMERANG)
- We determine and use improved cross sections
- Numerics checked via analytic calculations
- Results are tighter and more robust
- $au_X \sim 10^8 ext{ sec}$ $ho_X/n_\gamma < 5.0 imes 10^{-12} ext{ GeV}$
 - $ullet M_{ ilde{\mathsf{G}}} \sim 160 \ \mathrm{GeV}$
 - $\bullet n_{\tilde{G}}/n_{\gamma} < 3.2 \times 10^{-14}$
 - $\bullet T_R < 2.3 \times 10^6 \text{ GeV}$

CONCLUSIONS

- BBN versus CMB:
 Fundamental Test of Cosmology
- BBN with CMB:
 Stronger Dark Matter Constraints
- ullet Constraints on Neutrinos: 1.6 < N_{eff} < 3.1 (or N_{eff} < 3.4 given N_{eff} > 3.0)
- Decaying Dark Matter Used CMB inputs for η Better treatment of cross sections Analytic verification of numerical results

We derive stronger and more robust constriaints